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ABSTRACT

Extracting an effective facial feature representation is the critical task for an automatic expression 
recognition system. Local binary pattern (LBP) is known to be a popular texture feature for facial 
expression recognition. However, only a few approaches utilize the relationship between local 
neighborhood pixels itself. This paper presents a hybrid local texture descriptor (HLTD) that is derived 
from the logical fusion of local neighborhood XNOR patterns (LNXP) and LBP to investigate the 
potential of positional pixel relationship in automatic emotion recognition. The LNXP encodes texture 
information based on two nearest vertical and/or horizontal neighboring pixel of the current pixel 
whereas LBP encodes the center pixel relationship of the neighboring pixel. After logical feature 
fusion, the deep stacked autoencoder (DSA) is established on the CK+, MMI, and KDEF-dyn dataset, 
and the results show that the proposed HLTD-based approach outperforms many of the state-of-the-art 
methods with an average recognition rate of 97.5% for CK+, 94.1% for MMI, and 88.5% for KDEF.

Keywords
Deep Neural Network, Emotion, Facial Expression, Feature Fusion, Hybrid Local Texture Descriptor, Stacked 
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INTRODUCTION

Emotions are the automatic process of the brain directly caused by events in the environment. Emotions 
are complicated to define but share some information with others. Emotions can be expressed in 
different shapes, such as speech, facial expression, and actions. In human interaction, the intuition 
of facial expressions creates a communication channel along with voice, which conveys primary 
evidence about the internal emotional state of the person in conversation. Facial expression is caused 
by a coordinated pattern of muscle movements, triggered by a particular brain area. Facial expression 
understanding via the machine can modernize user interfaces such as robotics, car driving, etc.,. In 
the last few decades, many methods were proposed for Automatic Facial Expression Recognition 
(AFER) towards feature extraction and recognition. Nevertheless, AFER is still a challenging task with 
high accuracy because of the minor interpersonal variation along with the substantial intra-personal 
distinctions arising from illumination, posture, expression, and other aspects.
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In general, the AFER system contains three primary stages, namely preprocessing, features 
extraction, and classification. The essential stage for AAFER is to extract standard features from the 
given image to effectively discriminate different emotions. Facial expressions involve changes in local 
texture. Appearance feature-based approaches are good at capturing transient features, and it can be 
extracted from the entire face or the specific facial regions. The region-based feature extraction omits 
a useful correlation among different features and increases the feature space so that computational 
cost is high with the risk of overfitting. The most widely used appearance-based methods are Gabor 
wavelets(Bartlett et al., 2005), Local Binary Pattern (LBP) (Huang, Wang, & Ying, 2010), and 
its variants. Among these methods, LBP is studied extensively in the application of AFER. This 
type of code generation method considers the relationship between center and neighboring pixels 
but neglecting the relationship among the neighboring pixels. Due to this fact, these methods are 
less discriminative to distinguish different textures as they might be insufficient to define the local 
substructure feature accurately. Moreover, the presence of intensity variations and noise in the local 
region may produce false feature codes.

This paper introduces a new intensity variation based hybrid local texture descriptor to overcome 
the limitations as mentioned above and to increase the discriminative capability of feature pattern 
for AFER. The proposed hybrid local texture feature descriptor encodes the sectional shape by mean 
of the relationship of neighboring pixels with the center pixel as well as the relationship among 
neighboring pixels. This type of feature fusion excludes featureless variations in the local region and 
also reduces the feature space. In recent years, deep learning approaches perform better in AFER 
and become more popular in the computer vision community (Chen et al., 2018; Jain, S. Kumar, A. 
Kumar, Shamsolmoali, &Zareapoor, 2018; Xie, & Hu, 2019). However, it requires extensive training 
data for proper training of deep network model. Due to the unavailability of sufficient data in the 
current expression dataset, most of the deep learning methods have employed image augmentation at 
the cost of high computational power (Christou, & Kanojiya, 2019;D. Liang, H. Liang, Yu,& Zhang, 
2019; Nguyen et al., 2019). Without such augmented data, the effectiveness of the proposed hybrid 
feature is evaluated using a deep-stacked autoencoder. Deep Stacked autoencoder (DSA) is one of the 
deep learning models that has been broadly applied to various applications (Chen et al., 2018; Zeng 
et al.,2018). The best part of DSA is that it can extract useful, reliable, and specific characteristics of 
features after identifying and eliminating redundant features in an unsupervised fashion.

Further, an AFER is a challenging task due to the inter-person and intra-expression variations. 
The external factors such as noise, illumination, and environmental change are also raising the 
complexity of the AFER. Here, a DSA-based deep learning model is designed to improve accuracy 
by learning valuable hybrid features. The proposed person-independent facial expression recognition 
system shows better performances using DSA with and without noise. The highlights of the proposed 
work are as follows:

•	 A hybrid local texture descriptor (HLTD is introduced to integrate the gains of two local features 
namely LBP and LNXP.

•	 The higher-level feature mapping by stacked autoencoder compress the feature space further 
which in turn reduce the computational cost and improve the accuracy.

•	 The outcome of the experiments using a deep stacked autoencoder framework on a diverse subset 
of features proves the effectiveness of the proposed system.

•	 The presented DSA-based approach to recognize facial expressions under a noise environment 
effectively.

The rest of the paper is structured as follows. The related works section briefly reviews the related 
works and the subsequent section presents the proposed methodology. The result and discussion section 
report the experimental outcome on the CK+, MMI, and KDEF-dyn datasets. The conclusion section 
gives the conclusion of the proposed approach and provides scope for further study.
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RELATED WORKS

Many image classification algorithms are more specific in determining, understanding, describing, 
and refining useful patterns or features. In a feature-oriented approach, facial expression information 
is obtained in terms of geometric or appearance features (Akputu, Seng, Lee,&Ang, 2018; Barman,& 
Dutta, 2019; Majumder, Behera, & Subramanian, 2016). The geometric method uses the absolute 
and relative geometrical relationship of facial components for feature extraction. Two well-known 
model-based facial feature point detection methods are an Active Shape Model (ASM) (Cootes, 
Taylor, Cooper, & Graham,1995; Shbib, & Zhou, 2015) and an Active Appearance Model (AAM) 
(Edwards, Cootes, & Taylor, 1998; Maximiano da Silva, &Pedrini, 2016). The main drawback of 
the statistical model is the model fitting. An automatic feature point detection method is hard to 
implement in the real-time data due to the variations in illumination and head pose change. The 
expression difference among different persons varies in the same database. The difference is even 
more significant for different databases. In such cases, developing a generalized geometrical model 
for AFER is a challenging task. Furthermore, geometric feature-based methods ignore skin texture 
change, which is essential for facial expression modeling to capture micro muscle movements.

In appearance feature-based approach, features express the facial appearance in terms of 
edges, corners, statistical features, etc., Among the various appearance-based approach, Principal 
Component Analysis (PCA) (Turk, & Pentland, 1991),Histograms Oriented Gradients feature (HOG) 
(Nazir, Jan, & Sajjad, 2018), Independent Component Analysis (ICA) (Guo, Zhang, Deng, & Wei, 
2013),Scale Invariant Feature Transformation (SIFT) (Kalsum, Anwar, Majid, Khan, & Ali, 2018), 
Local Directional Number Pattern (LDN) (Rivera, Castillo, & Chae, 2015), are the most popular 
features extraction methods. The multi-scale multi-resolution gabor filter is used widely with good 
recognition accuracy, but it is computationally intensive. The conventional LBP has been used as a 
useful texture feature in face analysis (Shan, Gong, & McOwan, 2009; Tan, & Triggs, 2007), which 
preserve the facial information effectively. Recently, Illumination invariant merged binary pattern 
coding proposed by (Munir, Hussain, Khan, Nadeem, & Arshid, 2018) along with PCA, extract 
the subcode pattern based on the position of neighboring pixel and the final combined feature set 
proves that full-face analysis performs better than the zone-based recognition in the real-time dataset. 
Similarly, the Histogram Oriented Gradient (HOG) with Graph Signal Processing (GSP) reduces the 
redundant feature, but there is a trade-off between the feature size and initial computation cost (Meena, 
Joshi, & Sharma, 2018). Recently the feature fusion of HOG and OC-LBP is applied successfully 
in face recognition (Singh & Chhabra, 2018), and it proves that the handcrafted feature fusions are 
more suitable for low computational devices. So, an efficient handcrafted feature formally considers 
the right trade-off between computational efficiency and accuracy.

Usually, texture contains numerous types of patterns. The combination of many patterns can 
provide effective texture representation since they collectively represent the information in a different 
aspect. Therefore, to enhance the discriminant power of the facial feature in AFER, multiple features 
from different extraction methods can be used together. For example, a hybrid approach of PCA and 
LBP is introduced in (Luo, Wu, & Zhang,2013) to combine the local and global grayscale features 
of facial expression. In the Serial Feature Fusion strategy concatenate the histogram of different 
featured images based on the union-vector (Yang, Ban, Li, & Yang, 2018). The combination of SIFT 
and SURF features introduced in (Kalsum et al., 2018) uses a spatial bag to generate a fixed-length 
feature for all samples. But, the multiple feature fusion techniques are computationally intensive 
when the number of features increases. To reduce the computational cost without losing informative 
texture details, the Gradient Local Ternary pattern proposed in (Holder, & Tapamo, 2017), combine 
the histogram of positive and negative gradient difference and using PCA the feature space dimension 
is reduced. The Gabor and LDN based feature descriptor proposed in (Zhang et al., 2018) adopt the 
mean pooling technology for feature concatenation and reduction. Recently, the Local Prominent 
Directional Pattern (LPDP) is proposed to differentiate various types of textures using the statistics 
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of the weighted distribution of neighboring pixels directions. The discriminative capability of LPDP 
is reduced due to the less difference among expressions of the elder subjects.

In recent years, Deep Neural Network (DNN) (Sharan, & Moir, 2017; Zhang et al., 2016) has 
extended attention in artificial intelligence and machine learning, and many related algorithms have 
been applied in image recognition problems effectively (Shi, & Pun, 2017; Y. Wang, X. Wang, & Liu, 
2016). Instead of using shallow learning model (Al Rahhal et al., 2016) with single layer nonlinear 
transformation, a DNN based model extract and learn the high-level features from the data directly. 
These higher-level feature representations can describe the semantics of the data and increase the 
robustness of intra-class variability. But significant computational power is required to train the 
model, and additional effort is needed to preprocess the data. Some existing methods combine or 
fuse different features to produce a complete representation feature, and the classification using a 
deep neural network improves the recognition accuracy than the single feature alone.

In (Majumder et al.,2016), the regional LBP, as well as geometric features, are used for the 
feature fusion using three-level of the autoencoder. The first two autoencoders are used to adjust 
the feature size of different natured features and the final autoencoder used for classification. The 
HOG and PCA feature-based deep learning techniques proposed by (Zeng et al., 2018) utilize the 
handcrafted features for 7 and 8 class expressions. In general, the model gets confused when there 
is a similarity that exists in the shape and appearance of features for the same expression. Another 
feature fusion approach (Fan, & Tjahjadi, 2019) combines handcrafted features (PHOG and shape 
feature) with dynamic deep features to improve recognition accuracy. The unavailability of sufficient 
data to train a deep neural network is a significant issue. So that most of the deep learning methods 
have employed image augmentation at the cost of high computational power. From the above study, 
it is proved that the feature fusion technique enhances the discriminative information and improves 
the overall performance of the system.

Most of the existing deep learning models focus on extracting higher-level feature mapping. 
But disregard the lower level features extracted from the local facial regions. This work mainly 
focuses on exploiting the potential of features extracted based on local neighborhood relationships 
and build a better performing deep neural network model using Stacked Autoencoder. Unlike the 
previous approach, local feature extraction is performed independently from the deep neural network 
to highlight the significance of local features in expression analysis. Here, three types of handcrafted 
features are considered for analysis, which includes LBP, LNXP, and the Hybrid Local Texture 
Descriptor (HLTD). The deep neural network exploits the reduced features supplied by the last layer 
of the DSA and trains a softmax classifier, which implements the transfer learning approach. The 
conventional neural network algorithms are always liable to the gradient diffusion and local maximum, 
which in turn provide a reduced recognition rate. Thus, DSA learns the data with initial weight in 
an unsupervised manner, and during the backpropagation, weights are updated based on the error 
to improve accuracy. The contributions of this approach are twofold. The first one is to verify the 
capability of the closest neighboring pixel relationship that is neglected by the other encoding schemes 
in AFER. The new hybrid local texture descriptor is introduced by logically fusing LBP and LNXP. 
The second contribution is the evaluation of the hybrid feature using deep-stacked autoencoder to 
improve the accuracy of the proposed system.

THE HYBRID LOCAL TEXTURE DESCRIPTOR (HLTD) BASED AFER

The proposed AFER system involves the following steps: Feature extraction, data fusion, deep stacked 
autoencoder based classifier. Figure1 shows the different phases involved in the proposed approach.

Automatic Extraction of Local Texture Descriptor
LBP is one of the most dominant texture descriptors since its introduction. It is proposed by Ojala, 
Pietikäinen, & Mäenpää, (2002) with the two local underlying complementary assumptions that 
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texture has pattern and strength. The local substructure size is decided based on P and R where P is 
a number of the neighboring pixels located at the radius of R. For the given a grayscale image with 
the intensity value I I x y

i i i
= ( ),  at the location x y

p p
, , the LBP operator encodes the 3 3×  local 

substructure of size R = 1� and P = 8 . The pixel value at the pth sampling point I
p
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Equation 1:
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Then the LBP
P
R  features are calculated by taking the corresponding decimal equivalent. 

According to (Ojala et al., 2002), a subset of the basic LBP pattern is adequate to represent texture 
details of an image. This subset pattern is said to be a uniform LBP pattern if it contains almost two 
transitions, 0 to 1 or 1 to 0 (Topi, Timo, Matti, & Maricor, 2000). The uniform LBP encodes the 
presence of micropatterns only, and the feature dimension is 59. However, it lost 20% of the texture 
details, which leads to higher false expression recognition (Zhang et al.,2016). The region-based 
uniform LBP feature extraction increases the feature dimension when all the sub-region feature vectors 
are concatenated, but it did not precisely represent the expression uniqueness when the number of 
blocks is small. Here, the LBP pattern is extracted from the whole face to retain the shape information 
of the facial region.

The conventional LBP only represents the center pixel relationship with the neighboring pixel 
of the selected window. The contribution of the relationship among the closest adjacent pixel in 
texture description is analyzed differently in the proposed approach. This paper employed a new local 
texture descriptor called Local Neighborhood XNOR pattern, which represents the relationship among 
closest neighboring pixels with the current pixel. Figure 2 shows the encoding difference between 
conventional LBP and LNXP. Like LBP, from the sub-structure, an 8-bit binary code is calculated 
using the current pixel as the threshold. The two closest neighboring pixels are located vertical and/
or horizontal to the ith   sampling point. The neighboring pixel direction is different for the corner 
pixels such as I I I

1 3 5
, ,  and I

7
. For the remaining pixels, neighboring pixels will be in the same 

Figure 1. Phases of the proposed system
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directions that are either in the vertical or horizontal direction. Its positions from the ith  sampling 
point is represented as i modP+( )1 �  and P i modP− +( )1 � � . For example, the neighboring pixel 
position for I
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where i=0,1,2. . ., P-1.
The bitwise XNOR operation is performed between the outcome of Equation 4 and 5 in order to 

retain the useful information. This binary operation. The eight-bit LNXP is calculated for the selected 
window using the following Equation 6 and 7:
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After encoding, the binary code is converted into its corresponding decimal value of the binary operator 

S I I I
i mod P i P i mod P+( ) − +( )1 1� )� �

, ,�  using Equation 7. Figure 3 shows the LBP and LNXP code generation.

Figure 2. LBP and LNXP neighboring pixel
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Feature Fusion
The texture is the visual information of the surface and reveals the real deviations upon a surface, and 
it is distinct as a specific group of the various patterns. As stated early, LBP is robust in representing 
simple features, such as edges, corners, and spots. Thus, LBP can be viewed as a substructure pattern 
code to provide a specific description of the given surface. The discrimination power of the feature can 
be improved when the combination of many patterns represents the texture. With this intuition, a hybrid 
approach is proposed using Hybrid Local Texture Descriptor (HLTD) for AFER. Usually, feature fusion 
approaches concatenate different types of features together. Such a method is simple, but the resultant 
feature may not perform better (Fu, Cao, Guo, & Huang,2008). The cause of such performance is an 
uneven dimension of different natured features, especially with the geometric and appearance feature.

Figure 3. LBP and LNXP code generation

Algorithm 1. Hybrid texture feature extraction

Input: Facial Image I
W H× , where W and H are the width and height of an image, respectively. From each local patch, 

neighboring pixels P =8 is identified at the radius R=1.

Output: Hybrid Local Texture Descriptor (HLTD)

Step 1: For each image in the given dataset do
Step 2:Perform face detection
Step 3:Adjust the contrast using Equation.1
Step 4:Downscale the facial image to the specified size
For w= 2 to W-1 do
For h= 2 to H-1 do
While do

Identify local neighborhood I I w h
i
= ± ±( )1 1,

If I I
i c
≥  then

= 
End If
Ifthen
= 
Else If then
= 
End If
End While
End For
End For
Step 5:Return
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A simple concatenation feature fusion results in poor recognition accuracy due to the significant 
unbalanced dimension of various features. In the proposed feature fusion method, both local feature dimensions 
are the same, so that logical feature fusion is carried out with the expectation to reduce the size and improve 
the recognition accuracy. This logical feature fusion technique eliminates irrelevant information while retaining 
the shape information, which is common for both features. This feature level fusion strategy is based on the 
logical operator. Suppose LNXP and LBP are two feature spaces defined on the given dataset. For the random 
sample, the two feature vectors LNXP and LBP are logically fused using bitwise AND by Equation 8:

γ α β= ⋅( ) 	 (8)

The logically combined feature is n-dimension provided and is also n-dimension. All logically 
fused feature vectors of all samples define the overall feature space. It is mathematically represented 
as follows:
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For the given LBP=11000011 and LNXP =11111101, the HLTD is calculated as 11000001 
(logical AND of LBP and LNXP). The following Algorithm 1 explains the steps of feature extraction 
and fusion.

Feature Analysis
The discriminant power of the proposed hybrid feature is shown in Figure 4. The evaluation is made 
between the LNXP, LBP, and the hybrid feature. The proposed encoding scheme provides a better 
description of a different structure than the LBP and LNXP encoding scheme and is less sensitive to 
dynamic contrast change. The LBP, LNXP, and hybrid encoding of 3 different local substructures are 
shown in Figure 4. The patches (a) and (b) have diverse structures, whereas the patches (b) and (c) 
have related structures but changed in contrast. The LBP generate the same code for the two different 
structures, whereas LNXP and the hybrid feature represent the structural difference between (a) and 
(b) with two different code. Also, the hybrid coding scheme shows better discriminant capability for 
the low contrast patch than the LBP. The noise sensitivity analysis is verified by the example shown in 
Figure 5(a) and 5(b). The encoding result of the given local patch is described with a null or minimum 
level of difference by LNXP. This example exhibits that LNXP is more stable under noise than LBP.

Further, a non-parametric statistical test is carried out to avoid possible erroneous assumptions 
about feature distribution under a noise environment. For this purpose, zero-mean Gaussian 
noise is added to the set of images randomly collected from the working dataset, and the noise 
variances vary from 1 to 10 to generate the noisy images at each noise variance level. Now the 
three types of features are extracted from the noisy images. The dissimilarity of histograms 
obtained from noisy and the corresponding noiseless featured images for each level of noise 
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variance is calculated using chi-square distance Equation11. Chi-squared χ2  distance is used 
widely in histogram-based feature comparison from facial images data. The χ2  distance for two 
(histogram) vectors 

�
h
i

 and 
�
h
ib
'  is defined as:

χ2

1

2

� �
� �

� �h h
h h

h h
i j

b

D i b i b

i b i b

,
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( ) −( )







( ) + ( )=
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Figure 4. The encoding process of three different local substructure using three features

Figure 5. Feature analysis under noise (a) Local patch encoding with noise (b) Histogram distance between noisy and noiseless 
images at different noise level variance
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where 
�
h
i
 and 

�
h
i
'  are the histogram of the noisy and noiseless image and b  denotes the bth  in of 
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h
i
 

histogram. Equation12 can be rewritten in a matrix-based formulation as:
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where ⋅  denotes the element-wise square root of a matrix.
The dissimilarity measure is taken for a different feature, and its average is shown in Figure5(b) 

for each noise variance. From the result, it is observed that the divergence for the hybrid feature is 
higher than LNXP and lower than LBP up to the particular level of noise variance, and the dissimilarity 
is not much increased further even with the higher noise variance. However, the LBP and LNXP 
dissimilarity distance gradually increased when the noise variance level increased. Since the hybrid 
feature integrates advantages of LBP and LNXP, it tolerates small changes in the local region and 
in that way, ensures consistent codes. This type of feature analysis proves that local substructure 
change due to the additive noise will not disturb the discriminative capability of the hybrid feature.

Deep Stacked Sparse Autoencoder
This paper also demonstrates how the deep neural networks are used for dimensionality reduction 
and recover the spatial information by employing a sequence of the sparse autoencoder. A set of 
sparse autoencoders are stacked to design the deep neural network, and it will learn the higher-level 
features in an unsupervised manner, and for the classification, the softmax classifier is used. During 
the backpropagation, internal parameters are updated and feedback to the entire network. Conventional 
Deep Neural Network took enormous time for training and produced bad generalization. Hinton, 
OsinderoandTeh (2006) address this issue with an objective that unsupervised learning using initial 
weight and achieve generalization by applying backpropagation to fine-tune the initial weights.

The sparse autoencoder (SA) is the one type deep learning model, on a bio-inspired hierarchical 
neural network and has an inherent capability to extract higher-level features from the data. A typical 
SA comprises three layers, namely, the input layer, one hidden layer, and the reconstruction layer, 
and it is shown in Figure 6. It performs two functions, namely encoding function, and decoding 
function. During the encoding phase, the input data x i N

i
, , , ,= …1 2  is represented by the hidden 

layer h
i
 using a non-linear activation function, and is shown by Equation 13and14:

h f x x
i i i
= ( ) ≈ ˆ 	 (13)

f x sigm W x b
i i( ) = +( )0 0

	 (14)

where W
0

 and b
0
 represent the initial weight and bias of the network, respectively. The logistic 

sigmoid function 1
1

+ ( )( )
−

exp x  is mostly chosen as the activation function for encoding and decoding. 

In the decoding stage, x̂
i
 is reconstructed to the input feature by the same approximation function 

and is shown as follows:

x̂ g h sigm W h b
i i i
= ( ) = +( )1 1

	 (15)
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where W
1
 and b

1
 denote as the updated weight and bias for the next stage, respectively.

The quality of reconstruction performed by the decoding function is calculated as the loss function 
L X X, ˆ( ) . The main objective of the sparse autoencoder is to minimize the expected loss with some 
constraints, such as by restricting the size of the hidden unit. The sparse autoencoder proves that the 
network can still discover useful patterns by imposing more constraints even with a large number of 
hidden units. To maintain the average activation of the hidden unit ρ̂

j( ) , the sparsity parameter ρ( )  

is introduced to enforce ρ̂ ρ
j
= , so that value is overfitting, that is nearly zero. The deviation of ρ̂

j
 

from ρ  is avoided by adding penalty term based on Kullback-Leibler divergence function and can 
also be written as the probability density functions of two distributions by Equation16:

j

s

j
j

s

j j

KL log log
= =
∑ ∑= + −( ) −

−1 1

2 2

1
1

1
( || )ˆ

ˆ ˆ
ρ ρ ρ

ρ
ρ

ρ
ρ
ρ

	 (16)

The final overall cost function of the sparse autoencoder mathematically ex-pressed by Equation17 
and 18:

J W b J W b KL
sparse

j

s

j

l

, , ( || )ˆ( ) = ( )+
=

+

∑β ρ ρ
1

1

	 (17)

Figure 6. A typical Stackedautoencoder structure
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, ( ˆ
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∑ ∑∑

+1 1

2 21

2

1 1 1

1λ
β

ll

KL
j

+

∑
1

( || )ˆρ ρ 	 (18)

The first two terms in Equation 16 are an average sum-of-squares error and a regularization 
term that tends to reduce the magnitude of the weight and helps to avoid overfitting. These terms 
control the sparsity penalty weight. In the deep neural network, many sparse autoencoders are 
trained in isolation. The encoders from the autoencoder have been used to extract features. The 
encoders from the autoencoders can be stacked together with the softmax layer to form a deep-
stacked autoencoder based neural network. The softmax classifier is the multi-class simplification 
of the logistic sigmoid function.

For multi-class classification problems, the given training set −( ) ( ) ( )x y x y x y
m m1 1 2 2

, , , , , , }� , 
is associated with the target that y K

i
∈ { }1 2, ,�  where K is the number of classes. The cross-entropy 

loss function is used for a 1-of-k coding scheme is denoted by Equation19. 

E y lny x
i

n

j

k

ij j i
θ θ( ) = − ( )

= =
∑∑
1 1

ˆ , 	 (19)

where ŷ
ij

 is the feedforward step outcome that indicates the ith  sample assign to the j th  class, and 
y x
j i

,θ( )  can be inferred as the probability of assigning ith  sample to j th  the class that is, ( | )ŷ x
j i
= 1  

and θ  s the parameter vector. The softmax function is the activation function of the output layer, and 
it is represented by Equation 20:

y x
a x

a x
r

r

j

k

r

( ) =
( )( )
( )( )

=∑

exp

exp
1

	 (20)

where 0 1≤ ≤y
r

 is the class prior probability, 
j

k

r
y

=
∑ =

1

1  and a
r
 is the conditional probability of 

the sample that belongs to class r. The results for the stacked autoencoder based deep neural network 
can be fine-tuned by performing backpropagation on the whole network. During back-propagation, 
the parameters weight (W) and bias (b) of the stacked encoder are updated by Equation21-24:

W W
m
W Wl l l l= −










+













η λ
1
∆ 	 (21)

b b
m
bl l l= −











η

1
∆ 	 (22)

∆ ∆W W d al l l l
T

= + ( )+( ) ( )1 	 (23)
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∆b dl l= +( )1 	 (24)

where d y a f zn n n
l l= − −( ) ( )( )� ’  is the error term at the output layer and for the intermediate layer 

d W d f z l n nl l
T

l n

l l
= ( )





 ( ) = − −′+ ( )1 1 2 3 2, , ,... , , and η  is the learning rate. This process continues 

until the error rate decreases; otherwise, stop and return the classification result.

Process of the Proposed Scheme Via Deep Stacked Autoencoder
This paper introduces the automatic facial expression recognition via a deep stacked autoencoder 
based neural network to improve recognition accuracy using HLTD. Recently, high-dimensional 
feature-based facial analysis performs better in most cases. Based on this observation, this paper 
introduces a high dimensional hybrid feature obtained by the fusion of LBP and LNXP. For AFER, 
preprocessing is required to make the given data suitable for subsequent steps, which in turn increases 
the overall system performance. At first, face detection is carried out based on the object detection 
algorithm (Viola, & Jones, 2004)to segregate the region of interest from the background, followed 
by contrast adjustment using CLAHE (Zuiderveld, 1994). All images are downsampled to the size 
of 48X48 to solve the range of faces caused by image acquisition conditions.

After preprocessing, two types of texture features are extracted to evaluate the proposed approach. 
The resultant feature space is very high in dimension. Though the high-dimensional feature learning 
takes more time and space, the bitwise AND operation is performed over LBP and LNXP to make it 
compact and efficient to apply. The resultant hybrid featured image is then fed into the deep stacked 
autoencoders.During the training stage, the higher-order feature is encoded by the first stage of 
autoencoder in an unsupervised manner. Based on the correlation exist on the input data, mapping is 
carried out by the hidden layers efficiently. In the second stage, the entire network is fine-tuned by 
the backpropagation algorithm in a supervised manner.

RESULT AND DISCUSSION

In this section, hybrid feature extraction and the classification results are reported on the publically 
available and well known CK+ (Lucey et al., 2010), MMI (Valstar, & Pantic, 2010) and KDEF-dyn 
(Calvo, Fernández-Martín, Gutiérrez-García, & Lundqvist, 2018; Lundqvist, Flykt, & Öhman, 1998) 
dataset using the method outlined in section 3. Finally, the classification results are compared against 
state of the art methods reported in the literature. In this experiment, the onset and apex state frames 
of the six basic emotions are selected for further processing. Initially, feature extraction algorithms 
are applied to the preprocessed facial image. The feature extraction results are displayed in Figure 7. 
The performance of the HLTD is evaluated by dividing the dataset into N-fold more explicitly with 
approximately equal size, and N is chosen based on the number of subjects involved in the given dataset 
(Rathee, & Ganotra, 2017). The samples from the one fold are used for testing, and the rest of the 
folds are used for training. Therefore, the training and testing sets are disjoint sets. Finally, the overall 
accuracy of the proposed approach is reported with the mean accuracy of N-fold recognition results.

In the proposed deep learning framework, DSA consist of five layers, namely the input layer, 
three hidden layers, and the output layer. The greedy layer-wise training is used to identify optimal 
parameters. For that, the input layer is trained with hybrid featured image and weight, and bias values 
are returned to the next level. Meanwhile, the first layer transforms the raw input data into a vector 
containing the activation of the hidden units and then trains the second layer. The same process is 
repeated for the successive layers by connecting each layer output to the input of the subsequent layer. 
In this way, the parameters of each layer trained, and the best parameters are maintained for the rest 
of the model. The backpropagation based fine-tuning is done to yield better results by updating the 



Journal of Information Technology Research
Volume 15 • Issue 1

14

parameters of all layers at once. Since this framework is designed for classification, the decoding part 
of the stacked autoencoder is omitted. The parameter details of DSA is given in Table 1.Parameters 
are fixed after many trails and hit method. The maximum epochs for pre-training and fine-tuning 
are set to 400.

Results on CK+ Dataset
The Extended Cohn-Kanade (CK+) data set contains 593 videos of 123 persons, where 31% are male, 
and 69% are female with the age group between 18-50 years. The image sequences contain seven facial 
expressions, namely anger, disgust, fear, happy, sad, surprise, and neutral. In this part, the logically 
fused hybrid featured images are used as the input for the DSA, and the results after fine-tuning are 
reported in Tables2 and 3. The encoding part of the autoencoder would be very different if the data 
were completely random. But if there are correlated features in the input data, then the algorithm 
will be able to determine some of those correlations quickly. Based on this intuition, hybrid featured 
images are given as input for DSA. The average recognition rate of the hybrid feature is 97.5% for 
6-class recognition and 86.3% for 7- class recognition, respectively.

From Table 2, it can be observed that all six emotions are classified with high accuracy. Among 
six expressions, anger, disgust, and happy achieve accuracy of 100%, due to the presence of distinctive 
hybrid features on those expressions. At the same time, the fear and surprise emotions provide 
consistent results due to misclassification among expression with sad. In general, misclassification 
among expressions occurs due to the minor variations in muscle movements for the different 

Figure 7. Sample images from working dataset (odd rows) and its corresponding featured image(even rows)

Table 1. Deep stacked autoencoder parameters settings

Number of hidden layers Number of hidden units per layer L2WeightRegularization

3 400-200-50 0.004-0.002-0.002

Sparsity Regularization Sparsity Proportion Max Epochs

4 0.5-0.3-0.3 400-200-50
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expressions of the same person and the inter-person variation for the same expression. For the seven 
classes, the average accuracy reduced slightly after the inclusion of neutral expression, and it is shown 
in Table 3.Noticeably, expressions are misclassified with the neutral state so that the type I error rates 
occurred up to 13.6%, 12.1%, 11.1%, 9.4% and 8.8% for anger, disgust, sad and surprise, respectively. 
The type I error is the ratio between false positive and the sum of false positive and true negative. 
However, the highest recognition rate is achieved for fear with 95.5%, and other expressions also 
achieve reasonable recognition rate. Also, the neutral expression recognition rate is comparatively 
low due to the misclassification with anger so that 26.9% type I error occurred. The seven class 
average recognition rate is 11.2% lower than the six class expressions. One of the main reason for 
the performance degradation is insufficient training samples for some expressions.

Results on MMI Dataset
The MMI face dataset contains a frontal and profile view with various facial expressions. In our 
experiments, the frontal view images (Part II) are considered, which consists of 238 videos of 28 
subjects. Each of the sequences is grouped into six basic emotions (anger, disgust, fear, happiness, 
sadness, and surprise). Table 4 shows the result of a hybrid feature based 6-class person independent 
experiment on the MMI dataset. As implemented in the CK+ dataset, samples of the single subject’s 
images are selected for testing, and the remaining subject’s images are used for training. The overall 
recognition accuracy with the hybrid feature is 94.1%.

Table 2. Confusion matrix of six class recognition on CK+ dataset using HLTD

Predicted Label

Anger Disgust Fear Happy Sad Surprise

Tr
ut

h 
La

be
l

Anger 100 0 0 5 0 0

Disgust 0 100 0 0 0 0

Fear 0 0 96 0 0 4

Happy 0 0 0 100 0 0

Sad 5 0 0 0 90 5

Surprise 0 0 0 0 3.3 96.7

Avg. Accuracy: 97.5%

Table 3. Confusion matrix of seven class recognition on CK+ dataset using HLTD

Predicted Label

Anger Disgust Fear Happy Sad Surprise Neutral

Tr
ut

h 
La

be
l

Anger 86.4 0 0 0 0 0 13.6

Disgust 0 87.9 3.1 0 4.5 0 4.5

Fear 0 0 95.5 0 0 0 4.5

Happy 0 2.9 2.9 91.2 0 0 2.9

Sad 5.55 0 0 0 88.9 0 5.55

Surprise 0 0 0 0 3.1 90.6 6.3

Neutral 20.7 0 0 3.45 3.45 6.9 65.5

Avg. Accuracy: 86.3%
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Like the CK+ dataset, the highest recognition is achieved for happy with 99.2%, and the lowest 
rate is achieved for sad with 88.3%.summarizeApart from these two expressions, the rest of the 
emotions provide more than 90% results due to very low misclassification among the expressions. 
From the result, it is observed that the highest misclassification occurs in angry, with 11.7% type I 
error. Because both expressions involve micro muscle movements around eyebrow and mouth regions, 
and remaining regions have a similar shape and appearance. Also, poor representation or pose given 
by the subject is one of the reasons for misclassifications. In all cases, increasing the number of 
samples per expression can further improve the recognition rate. Hence to improve the detection 
rate, a secondary feature like forehead wrinkle, nose side wrinkle may be incorporated. According 
to Table 5, the inclusion of neutral expression increase the misclassification among other expression 
and get the average recognition rate of 93.1%. Due to the good recognition of neutral, the overall 
recognition rate not reduced much.

Moreover, the subjects wearing eyeglasses the primary source of the presence of inappropriate 
information in feature vector while depicting the facial expressions characteristics; hence, including 
this useless information may produce uncertainty in the feature description. These are some of the 
causes of the lower accuracy of HLTD in MMI using a stacked autoencoder. However, improving the 
performance of the proposed method in such conditions can be another motivating research problem 
and leave it here as future work.

Table 4. Confusion matrix of six class recognition on MMI dataset using HLTD

Predicted Label

Anger Disgust Fear Happy Sad Surprise

Tr
ut

h 
La

be
l

Anger 97.4 1.8 0.8 0 0 0

Disgust 2.75 94.5 2.75 2.75 0 0

Fear 2.75 3.05 91.6 0 0.8 0.8

Happy 0 0.8 0 99.2 0 0

Sad 5.4 0.8 4.7 0.8 88.3 0

Surprise 0.8 0.8 4.7 0 1.8 91.9

Avg. Accuracy: 94.1%

Table 5. Confusion matrix of seven class recognition on MMI dataset using HLTD

Predicted Label

Anger Disgust Fear Happy Sad Surprise Neutral

Tr
ut

h 
La

be
l

Anger 95.6 1.89 0 1.89 0.62 0 0

Disgust 0 92.8 4.5 1.8 0.9 0 0

Fear 3.2 2.5 86.3 1.6 1.6 4.8 0

Happy 1.6 0 3.3 95.1 0 0 0

Sad 2.97 1.98 4.96 0.99 89.7 0 0

Surprise 0.87 0 2.6 0 1.73 94.8 0

Neutral 0 0 0 0 0 0 100

Avg. Accuracy: 93.1%
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Results on KDEF-Dyn Dataset
The dynamic version of the Karolinska Directed Emotional Faces (KDEF-Dyn) has been often used 
in emotion recognition. It contains video clips of 40 models(20 females and 20 males) displaying each 
of seven expressions with morphing software is selected for feature extraction. After preprocessing, 
two types of local features are extracted from the detected face, and the feature fusion is carried out to 
obtain the HLTD. The hybrid featured images are fed into the DSA for classification. Table 6 shows 
the result of the six emotion classification. The average recognition rate of the proposed approach on 
KDEF-dyndataset is 88.5%, with the highest recognition accuracy of 98% for happy and the lowest 
recognition accuracy of 75% for fear.

From the results, it is observed that misclassification occurs among anger, disgust, and fear due 
to the existence of similar muscle movements around all primary components of the face. Similarly, 
happy and surprise are misclassified as fear because these expressions involve a similar muscle 
movement in the mouth. Table 7 shows the performance of the proposed approach in seven emotion 
recognition. The additional expression reduces the average recognition rate to 80.9%, which is 7.6% 
lower than the six class recognition rate. The highest recognition rate is 98% for neutral, and the lowest 
recognition rate is 63.7% for fear in seven class emotion classification. When the neural expression, 
for classification, the discriminating power of hybrid feature reduced so that the misclassification 
among expression increased except neutral and happy.

Table 6. Confusion matrix of six class recognition on KDEF-dyndataset using HLTD

Predicted Label

Anger Disgust Fear Happy Sad Surprise

Tr
ut

h 
La

be
l

Anger 95.7 1.1 0 0 0 3.2

Disgust 8.4 85.2 4.6 0 0.9 0.9

Fear 1.92 1.92 75 1.92 9.62 9.62

Happy 0 0 1 98 0 1

Sad 0 5.96 8.94 0 85.1 0

Surprise 0 0 6.4 0 0 93.6

Avg.Accuracy: 88.5%

Table 7. Confusion matrix of seven class recognition on KDEF-dyndataset using HLTD

Predicted Label

Anger Disgust Fear Happy Sad Surprise Neutral

Tr
ut

h 
La

be
l

Anger 76.7 13.17 0 0 11.14 0 0

Disgust 10.77 86 3.23 0 0 0 0

Fear 0.98 3.92 63.7 0.98 18.62 11.76 0

Happy 0.94 2.8 0 92.5 2.8 0.94 0

Sad 9.79 0 17.4 0 72.8 0 0

Surprise 0 0 15.5 0 0 84.5 0

Neutral 0 0 0 2 0 0 98

Avg. Accuracy: 80.9%
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To further confirm the dominance of the proposed approach under noise, zero-mean Gaussian 
noise is added to generate noisy images with a variance that varies from 1 to 10. From the noisy 
images, HLTD is extracted by the logical fusion of LBP and LNXP. The featured image is given to 
DSA for classification with the same parameter. Table 8 is showing how the noise factor affects the 
overall recognition rate with a distinctive feature and hybrid feature. Although noise can severely 
affect the recognition accuracy in all cases, it has been shown by the experiments that the hybrid 
feature performs well than individual features in the noise environment. The combination of these 
two features can efficiently integrate the gains mutually by preserving local features of the facial 
image differently. Therefore, the combination of LBP and LNXP descriptor is an effective method 
for AFER in different noise environments.

Feature Level Performance Validation
Several experiments are carried out to confirm the performance of the proposed approach. The first 
individual feature contribution towards the six class emotion classification is performed on three 
datasets. Then the hybrid featured image is classified using the DSA-based softmax classifier. Table 
9 shows the average recognition rate of three types of features, and the results clearly show that the 
performance of the hybrid feature notably better than individual feature vector with 97.5% for CK+ 
dataset, 94.1% for MMI and 88.5% for KDEF dataset. The summary of the recognition rate of all the 
three types of features (LBP alone, LNXP alone, and hybrid feature) is shown in Figure 8(a),8(b), and 
8(c) for three types of datasets. For the same experimental setup, LBP and LNXP feature achieves 
the average recognition accuracy of 77.2% and 90.7% respectively in the CK+ dataset, which is 
20.3% and 6.8% lower than the hybrid feature, respectively. Except sad, all other expressions achieve 
satisfactory results.

Similarly, in the MMI dataset, the individual feature performance is lower than the hybrid feature 
with 85.4% and 82.8% average accuracy using LBP and LNXP features, respectively. The hybrid feature 
achieves 94.1% average accuracy, which is 8.7% and 11.3% higher than LBP and LNXP features. 
Like the CK+ dataset, the sadness recognition rate is lower than the other expressions because the 
muscle movements all over face for sad is very minimal so that the misclassification rate is higher 
than other emotions. For KDEF dataset also hybrid feature achieves 7% and 12.7% more recognition 
rate than LBP and LNXP features, respectively. Here, much confusion occurs in fear with happy, sad, 
and surprise. Other than that, the remaining expression showed good recognition accuracy. Thus, 
the proposed hybrid feature shows its dominance over LBP and LNXP methods. The comparison of 
the average recognition rate of three types of features illustrates the superiority of the HLTD on the 
three public datasets using DSA.

Performance Comparison With Existing Work
In this subsection, the proposed method results are compared with other state-of-art methods. The 
comparison task becomes complicated due to the unknown fact of the input data and experimental 
setup. However, the proposed approach performance is compared against the existing methods that 
adopted similar protocols on CK+ and MMI dataset. Table 10 shows the average accuracy attained 

Table 8. Expression recognition rate on KDEF-dyndataset with varying noise

Descriptor Without Noise
With Noise

σ=2.24 σ=3.16

LBP 81.5 76 60.5

LNXP 75.8 53.9 53.5

HLTD 88.5 78.2 72.6
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by all the challenging methods on the CK+ and MMI datasets. For CK+, many approaches achieve 
good recognition accuracy. The reason is CK+ images are frontal face images taken under a controlled 
environment. In contrast, the classification accuracy obtained on the MMI dataset by all the existing 
methods is comparatively lower than the CK+ dataset, as MMI facial images are taken under more 
challenging situations.

Among all the comparative methods, the two highest accuracies are achieved by Majumder 
et al.,(2016) and Barman and Dutta (2019) using a hybrid feature that combines geometric and 
texture features. In Majumder et al.,(2016) approach, feature fusion is carried out using three 
autoencoders to balance the different nature of features, but the resultant high dimensional feature 
space increases the computational complexity. In Barman and Dutta (2019) approach, the D-T 
signature feature gets 98.7% average accuracy on CK+, but the experimental results seem to be 
person dependent. In Meena et al.,(2018) approach, there is a trade-off between the feature size 
and initial computation cost. Other local texture feature-based approaches like NEDPs (Iqbal, 
Abdullah-Al-Wadud, Ryu, Makhmudkhujaev, & Chae, 2018), Improved GLTP (Holder, & Tapamo, 

Figure 8. Performance of three types of features on (a) CK+ (b) MMI (c) KDEF-dyn dataset

Table 9. Average recognition rate using three types of a feature on three datasets

LBP LNXP HLTD

CK+ 77.2 90.7 97.5

MMI 85.4 82.8 94.1

KDEF 81.5 75.8 88.5
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2017), WPHOG TOP (Fan, Yang, Ye, & Yang, 2018), LDSP (Makhmudkhujaev, Iqbal, Ryu, & 
Chae, 2019) and HOG with GSP (Meena et al., 2019) extract histogram oriented features from 
the specific region or divide the whole face into a different block. This histogram-based feature 
description is simple, but, it needs adequate illustrations, and excludes the spatial information 
inside each region. For the MMI dataset, the average recognition accuracy of existing methods 
lower than the CK+ dataset. Like CK+, in MMI, also, Majumder et al. (2016) and Barman and 
Dutta (2019) achieve the topmost accuracy of 97.55% and 94.3%, respectively, which is slightly 
better than our proposed method. The subjects wearing glasses generate some un-wanted texture 
may arise discrepancy in the feature description, which leads to lesser accuracy in MMI. Even 
though the existing techniques use relatively more complex feature representations than our 
approach, the proposed HLTD shows better accuracy than those methods.

Further, the deep feature-based methods also obtain satisfactory results with some additional 
preprocessing. Usually, deep learning-based methods require more training data and more 
computing power to provide a better result in AFER. In a deep learning based approach, the 
training sample size is increased with the help of data augmentation, which generates simulated 
data. Here, the proposed approach robustness is proved without such additional data with 
good recognition accuracy. Nevertheless, the block-based texture descriptor retains the spatial 
information, the number of sample code required to describe the micro-texture information 
decreases. Due to this type of sampling error, the histogram-based description cannot increase 
spatial information. Hence, instead of generating a histogram, the proposed hybrid featured 
image is given directly to the stacked autoencoder to get higher feature level abstraction. From 
the experimental results, it is observed that the proposed HLTD outperforms the existing work 
for six and seven class expressions on three datasets.

The feature vector computation time of the proposed method is calculated using an un-
optimized MATLAB R2017b code on a desktop machine with octal-core CPU running at 3.5 
GHz. For a single image, LBP takes 0.0289 seconds, and LNXP takes 0.0229, whereas the 
hybrid feature takes 0.0131 seconds, which is faster and provides a notable gain in recognition 
accuracy than the single feature. According to the experimental results, the proposed method 
can be applied for real-time applications.

Table 10. Comparison of the proposed approach with state-of-art methods

Approach Feature CK+ MMI

Iqbal et al., 2018 NEDPs 93.78 69.01

Akputu et al., (2018) Gabor 88 -

Rathee and Ganotra, 2017 Geometric feature with PCA 90 -

Holder and Tapamo, 2017 Improved GLTP 86.5 -

Majumder et al., 2016 Geomantic and regional LBP 98.95 97.55

Chen et al., 2018 Deep Features 89.03 -

Fan et al., 2018 W-PHOG TOP 84.9 76.6

Jain et al., 2018 Hybrid deep feature - 92.07

Makhmudkhujaev et al., 2019a LDSP frequent feature 94.5 70.63

Mistry, Zhang, Neoh, Lim, & Fielding, 2016 hvnLBP 90.6 -

Meena et al., 2019 HOG with GSP 97.61 -

Barmanand Dutta, (2019) Distance and texture signature feature 98.6 94.3

Proposed Approach Hybrid Local Texture Descriptor 97.5 94.1
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Percent Error Analysis With Existing Work
The percent error is a measure of the degree of closeness of a measured or calculated value to its 
actual value (literature value), and it is expressed by Equation (25):

%Error
Accepted value Expermental value

Accepeted value
=

−( )
×1100 	 (25)

The negative percent error shows that the proposed model performs better than existing works. 
Table 11 and 12 show the average recognition rate percent error of the proposed method with state 

Table 11. Percent error comparison on CK+ dataset

Approach Avg.Recognition rate % Error

NEDPs (Iqbal et al., 2018) 93.78 -3.97

Gabor (Akputu et al., (2018) 88 -10.80

Geometric feature with PCA (Rathee and Ganotra, 2017) 90 -8.33

Improved GLTP (Holder and Tapamo, 2017) 86.5 -12.72

Geomantic and regional LBP (Majumder et al., 2016) 98.95 1.47

Deep Features (Chen et al., 2018) 89.03 -9.51

W-PHOG TOP (Fan et al, 2018) 84.9 -14.84

LDSP frequent feature (Makhmudkhujaev et al., 2019a) 94.5 -3.17

hvnLBP (Mistry, Zhang, Neoh, Lim, & Fielding, 2016) 90.6 -7.62

HOG with GSP (Meena et al., 2019) 97.61 0.11

Distance and texture signature feature (Barmanand Dutta, (2019) 98.6 1.12

LBP 77.2 -26.30

LNXP 90.7 -7.50

Table 12. Percent error comparison on MMI dataset

Approach Avg.Recognition rate % Error

NEDPs (Iqbal et al., 2018) 69.01 -36.357

Geomantic and regional LBP (Majumder et al., 2016) 97.55 3.536648

W-PHOG TOP (Fan et al, 2018) 76.6 -22.846

Hybrid deep feature (Jain et al., 2018) 92.07 -2.20484

LDSP frequent feature (Makhmudkhujaev et al., 2019a) 70.63 -33.2295

Distance and texture signature feature (Barmanand 
Dutta, (2019) 94.3 0.212089

LBP 85.4 -10.1874

LNXP 82.8 -13.6473
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of the art methods. In both datasets, a positive percent error is realized for three approaches with less 
than 1.5%. Besides, those methods achieve a better recognition rate than the proposed method with 
the high computational cost in terms of feature space.

CONCLUSION

This paper presents an efficient hybrid feature based facial expression recognition framework using 
deep stacked autoencoder. The proposed hybrid local texture descriptor (HLTD) is derived from 
the logical fusion of LBP and LNXP. The LNXP represents the mutual relationship among the 
closest neighborhood pixel whereas the LBP encodes the neighboring pixel relationship with the 
central pixel. The logical feature fusion of LBP and LNXP gains the advantage of both features by 
considering two different statistical and structural models in texture analysis. In the next step, higher-
level feature mapping using DSA reduces the feature space, which in turn reduces the computational 
cost and improves the recognition rate via fine-tuning. The effectiveness of three features is analyzed 
individually and collectively on CK+, MMI, and KDEF dataset. Experimental outcomes on three 
datasets exhibit that the HLTD outperforms than the descriptors from which it is derived and achieves 
an average recognition rate of 97.5% for CK+, 94.1% for MMI, and 88.5% for KDEF in six class. 
Also, the extensive experiments performed on the image having noise demonstrate that the hybrid 
feature performs better than the other two feature descriptors in a noisy environment. Further, the 
stacked autoencoder based deep neural network framework with backpropagation algorithm exhibit 
impressive performance consistently in all cases without augmentation and additional computational 
cost. In the future, this work can be further extended to investigate the robustness of the proposed 
feature descriptor in real-time data with the help of deep learning models.
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